Wolves in the panhandle of southeast Alaska are currently
being considered as an endangered species by the US Fish and Wildlife
Service in response to a petition by environmental groups. These groups
are proposing that the Alexander Archipelago wolf (Canis lupus ligoni)
subspecies that inhabits the entire region and a distinct population
segment of wolves on Prince of Wales Island are threatened or endangered
with extinction.
Whether or not these wolves are endangered with extinction was beyond the scope of our study. However our research quantified the genetic variation of these wolves in southeast Alaska which can contribute to assessing their status as a subspecies.
Because the US Endangered Species Act (ESA) defines species as “species, subspecies, and distinct population segments”, these categories are all considered “species” for the ESA. Although this definition is not consistent with the scientific definition of species it has become the legal definition of species for the ESA.
Therefore we have two questions to consider:
Taxonomy is the science of biological classification and is based on evolutionary history and common ancestry (called phylogeny). Species, subspecies, and higher-level groups (e.g, a genus such as Canis) are classified based on common ancestry. For example, wolves and foxes share common ancestry and are classified in the same family (Canidae), while bobcats and lions are classified in a different family (Felidae) because they share a common ancestry that is different from foxes and wolves.
Subspecies designations are often subjective because of uncertainty
about the relationships among populations of the same species. This
leads many scientists to reject or ignore the subspecies category, but
because the ESA is the most powerful environmental law in the United
States the analysis of subspecies is of great practical importance.
Our results and other research showed that the wolves in Southeast Alaska differed in allele frequencies compared to wolves in other regions. Allele frequencies reflect the distribution of genetic variation within and among populations. However, the wolves in southeast Alaska do not comprise a homogeneous population, and there is as much genetic variation among the Game Management Units (GMU) in southeast Alaska as there is between southeast Alaska and other areas.
Our research data showed that the wolves in southeast Alaska are not a homogeneous group, but consist of multiple populations with different histories of colonization, isolation, and interbreeding. The genetic data also showed that the wolves on Prince of Wales Island are not particularly differentiated compared to the overall differentiation in Southeast Alaska and do not support designation as a distinct population segment.
The overall pattern for wolves in southeast Alaska is not one of long term isolation and evolutionary independence and does not support a subspecies designation. Other authors, including biologists with the US Fish and Wildlife Service, also do not designate wolves in southeast Alaska as a subspecies and there is general recognition that North America wolf subspecies designations have been arbitrary and are not supported by genetic data.
There is growing recognition in the scientific community of unwarranted taxonomic inflation of wildlife species and subspecies designations to achieve conservation goals. Because the very nature of subspecies is vague, wildlife management and conservation should focus on populations, including wolf populations. This allows all of the same management actions as proposed for subspecies, but with increased scientific rigor.
Headline image credit: Alaskan wolf, by Douglas Brown. CC-BY-NC-SA-2.0 via Flickr.
Whether or not these wolves are endangered with extinction was beyond the scope of our study. However our research quantified the genetic variation of these wolves in southeast Alaska which can contribute to assessing their status as a subspecies.
Because the US Endangered Species Act (ESA) defines species as “species, subspecies, and distinct population segments”, these categories are all considered “species” for the ESA. Although this definition is not consistent with the scientific definition of species it has become the legal definition of species for the ESA.
Therefore we have two questions to consider:
- Are the wolves in southeast Alaska a subspecies?
- Are the wolves on Prince of Wales Island a distinct population segment?
Taxonomy is the science of biological classification and is based on evolutionary history and common ancestry (called phylogeny). Species, subspecies, and higher-level groups (e.g, a genus such as Canis) are classified based on common ancestry. For example, wolves and foxes share common ancestry and are classified in the same family (Canidae), while bobcats and lions are classified in a different family (Felidae) because they share a common ancestry that is different from foxes and wolves.
Our results and other research showed that the wolves in Southeast Alaska differed in allele frequencies compared to wolves in other regions. Allele frequencies reflect the distribution of genetic variation within and among populations. However, the wolves in southeast Alaska do not comprise a homogeneous population, and there is as much genetic variation among the Game Management Units (GMU) in southeast Alaska as there is between southeast Alaska and other areas.
Our research data showed that the wolves in southeast Alaska are not a homogeneous group, but consist of multiple populations with different histories of colonization, isolation, and interbreeding. The genetic data also showed that the wolves on Prince of Wales Island are not particularly differentiated compared to the overall differentiation in Southeast Alaska and do not support designation as a distinct population segment.
The overall pattern for wolves in southeast Alaska is not one of long term isolation and evolutionary independence and does not support a subspecies designation. Other authors, including biologists with the US Fish and Wildlife Service, also do not designate wolves in southeast Alaska as a subspecies and there is general recognition that North America wolf subspecies designations have been arbitrary and are not supported by genetic data.
There is growing recognition in the scientific community of unwarranted taxonomic inflation of wildlife species and subspecies designations to achieve conservation goals. Because the very nature of subspecies is vague, wildlife management and conservation should focus on populations, including wolf populations. This allows all of the same management actions as proposed for subspecies, but with increased scientific rigor.
Headline image credit: Alaskan wolf, by Douglas Brown. CC-BY-NC-SA-2.0 via Flickr.
No comments:
Post a Comment