Present-day
armadillo. Giant armadillo-like creatures roamed South America until
about 12,000 years ago. (Credit: © Heiko Kiera / Fotolia)
Aug. 13, 2013 — A new study
has demonstrated that large animals have acted as carriers of key
nutrients to plants and animals over thousands of years and on
continental scales.
The paper in the advance online publication of the journal Nature Geoscience
explains that vital nutrients are contained in the dung and bodies of
big animals. As they eat and move more than small animals, they have a
particularly important role in transporting nutrients into areas where
the soil is otherwise infertile.
In the study, the researchers use a new mathematical model to
calculate the effect of mass extinctions of big animals around 12,000
years ago, focusing on a case study of the Amazon forest. They estimate
that extinctions back then reduced the dispersal of phosphorus in the
Amazon by 98%, with far-reaching environmental consequences that remain
to this day. The model also enables them to forecast the likely
environmental effects of the extinction of large animals currently under
threat in Africa and Asian forests.
Up until 12,000 years ago, much of the world looked like an African
savannah. For instance, South America was teeming with large animals,
described by scientists as 'megafauna' -- a term for animals with a body
mass of more than 44kg (the size of a large dog). These megafauna in
South America, which overlapped with the earliest humans, included
several species of elephant-like creatures, giant ground sloths, and
armadillo-like creatures the size of a small car. In South America, most
nutrients originate in the Andes mountain range and are washed into the
forests through the river system.
However, on dry land, these nutrients
are in short supply unless they are transported through animal dung and
bodies. While small animals distribute nutrients over small distances,
large animals have a much greater range. According to the study, the
extinctions of large animals 12,000 years ago wiped out one of the main
means of transporting nutrients far from the rivers creating a nutrient
deficiency which continues to affect plant and animal life in parts of
the region today.
The researchers have developed a mathematical model, similar to one
used by physicists to calculate the diffusion of heat, to estimate the
ability of animals to distribute nutrients. The model is based on the
body size of the animal, drawing on existing data of their fossilized
remains. From this, the researchers have been able to estimate how much
the animal ate, defecated, and the range and distance they travelled,
which was then combined into one simple term. This model allows them to
calculate the ability of animals to distribute nutrients anywhere on the
planet at any time, if the animal's average size and distribution is
known. It can estimate the effects of past extinctions, such as those in
the Amazon. It can also forecast the effects of potential events
thousands of years in the future, such as calculating how much the
fertility levels of the soil would fall following elephant extinction in
Africa.
The study finds that the effect of the mass extinction of megafauna
12,000 years ago was to switch off a nutrient pump -- vital nutrients,
such as phosphorus, were no longer spread around the region but became
concentrated in those areas bordering the floodplains and other fertile
areas. It concludes that even thousands of years after the extinctions,
the Amazon basin has not yet recovered from this step change. Nutrients
may continue to decline in the Amazon and other global regions for
thousands of years to come, says the paper.
Lead author Dr Christopher Doughty from the Environmental Change
Institute at the School of Geography and the Environment, University of
Oxford, said: 'We have developed a model, based on the size of the
animal, that enables us to calculate how extinctions affect the
fertility of the landscape that species once inhabited. While 12,000
years may be a timescale that is beyond most people's understanding,
through this model we show that extinctions back then still affect the
health of the planet to this day. Put simply, the bigger the animal, the
bigger its role in distributing nutrients that enrich the environment.
Most of the planet's large animals have already gone extinct, thereby
severing the arteries that carried nutrients far beyond the rivers into
infertile areas. We can also predict the effects of further extinctions
-- a fate fast approaching many of the large animals that remain -- and
examine the likely impact thousands of years into the future.'
Co-author Dr Adam Wolf from the Department of Ecology and
Evolutionary Biology at Princeton University said: 'On today's planet,
the supply of nutrients in the soil is determined by river deposits or
nutrients that are airborne. Yet this analysis suggests that we may be
experiencing a peculiar post-extinction phase in Amazonia, and probably
many other parts of the world. We believe that large animals once played
a vital role in fertilising their landscape, so that the naturally
occurring deposits in rocks were less important. If humans contributed
to the mass extinction of big animals 12,000 years ago, this suggests
that humans started to affect the environment at global scales well
before the dawn of agriculture.'
Story Source:
The above story is based on materials provided by University of Oxford.
Note: Materials may be edited for content and length. For further information, please contact the source cited above.
Journal Reference:
- Christopher E. Doughty, Adam Wolf, Yadvinder Malhi. The legacy of the Pleistocene megafauna extinctions on nutrient availability in Amazonia. Nature Geoscience, 2013; DOI: 10.1038/ngeo1895
University of Oxford (2013, August 13). Extinctions of large animals sever the Earth's 'nutrient arteries'.
ScienceDaily. Retrieved August 14, 2013, from
http://www.sciencedaily.com /releases/2013/08/130813222701.htm
No comments:
Post a Comment